On weak solutions to a fractional Hardy–Hénon equation, Part II: Existence

نویسندگان

چکیده

This paper and [29] treat the existence nonexistence of stable weak solutions to a fractional Hardy--H\'enon equation $(-\Delta)^s u = |x|^\ell |u|^{p-1} u$ in $\mathbb{R}^N$, where $0 < s 1$, $\ell > -2s$, $p>1$, $N \geq 1$ 2s$. In this paper, when $p$ is critical or supercritical sense Joseph--Lundgren, we prove family positive radial solutions, which satisfies separation property. We also show multiple Joseph--Lundgren exponent for some \in (0,\infty)$ $s (0,1)$, property does not hold case $s=1$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation

This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.

متن کامل

Existence of Mild Solutions to a Cauchy Problem Presented by Fractional Evolution Equation with an Integral Initial Condition

In this article, we apply two new fixed point theorems to investigate the existence of mild solutions for a nonlocal fractional Cauchy problem with an integral initial condition in Banach spaces.

متن کامل

Existence of Solutions for a Nonlinear Fractional Order Differential Equation

Let D denote the Riemann-Liouville fractional differential operator of order α. Let 1 < α < 2 and 0 < β < α. Define the operator L by L = D − aD where a ∈ R. We give sufficient conditions for the existence of solutions of the nonlinear fractional boundary value problem Lu(t) + f(t, u(t)) = 0, 0 < t < 1, u(0) = 0, u(1) = 0.

متن کامل

Existence of Positive Solutions for a Nonlinear Fractional Differential Equation

Using the Schauder fixed point theorem, we prove an existence of positive solutions for the fractional differential problem in the half line R+ = (0,∞): Du = f(x, u), lim x→0+ u(x) = 0, where α ∈ (1, 2] and f is a Borel measurable function in R+ × R+ satisfying some appropriate conditions.

متن کامل

Existence of nontrivial weak solutions for a quasilinear Choquard equation

We are concerned with the following quasilinear Choquard equation: [Formula: see text] where [Formula: see text], [Formula: see text] is the p-Laplacian operator, the potential function [Formula: see text] is continuous and [Formula: see text]. Here, [Formula: see text] is the Riesz potential of order [Formula: see text]. We study the existence of weak solutions for the problem above via the mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis-theory Methods & Applications

سال: 2023

ISSN: ['1873-5215', '0362-546X']

DOI: https://doi.org/10.1016/j.na.2022.113165